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Abstract
The hippocampus has been recognized as an important biomarker for the diagnosis and assessment of neurological diseases.
Convenient and accurate automated segmentation of the hippocampus facilitates the analysis of large-scale neuroimaging studies.
This work describes a novel technique for hippocampus segmentation in magnetic resonance images, in which interactive neural
network (Inter-Net) is based on 3D convolutional operations. Inter-Net achieves the interaction through two aspects: one is the
compartments, which builds an exponential ensemble network that integrates numerous short networks together when forward
propagation. The other is the pathways, which realizes inter-connection between feature extraction and restoration. In addition, a
multi-target architecture is proposed by designing multiple objective functions in terms of evaluation index, information theory,
and data distribution. The proposed architecture is validated in fivefold cross-validation on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset, where the mean Dice similarity indices of 0.919 (± 0.023) and precision of 0.926 (±
0.032) for the hippocampus segmentation. The running time is approximately 42.1 s from reading the image to outputting the
segmentation result in our computer configuration. We compare the experimental results of a variety of methods to prove the
effectiveness of the Inter-Net and contrast integrated architectures with different objective functions to illustrate the robustness of
the fusion. The proposed framework is general and can be easily extended to numerous tissue segmentation tasks while it is
tailored for the hippocampus.
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Introduction

Cognitive dysfunction usually brings about the nervous sys-
tem disease which is caused by structural changes in the brain
[1, 2]. Especially, the hippocampus plays a vital role in human
memory and learning [3–5]. Atrophy and volume reduction of
the hippocampus have been shown to be observable charac-
teristics for the detection of mild cognitive impairment (MCI)
and Alzheimer’s disease (AD) [6]. In neuroimaging studies,
magnetic resonance imaging (MRI) is often used for the vol-
umetric assessment of the hippocampus [7], which has be-
come an indispensable tool for disease monitoring [8],

diagnosis [9], treatment [10], and prognosis [11]. As such,
the quantitative analysis of the hippocampus in MRI is of
great significance in clinical to better understand the inter-
individual variability of subject neuroanatomy.

So far, manual segmentation of brain tissues is still
regarded as the optimal standard [12], in spite of the fact that
it is an extremely tedious and time-consuming operation [13].
Intra- and inter-rater volume variability appear upon the wider
variability which is inherent to manual hippocampal segmen-
tation [14]. It is noticeable that the gray level of the hippocam-
pus in MRI verges on the adjacent structures, such as the
amygdala, thalamus, and caudate nucleus [15]. There is no
conspicuous boundary between the hippocampus and neigh-
boring regions (Fig. 1), which increases the difficulty of the
hippocampus segmentation. Consequently, a consistent and
faithful automatic segmentation methodology for hippocam-
pus is essential for improving the reliability of tissue segmen-
tation as well as relieving the workload of radiologists.

Over the past decades, automatic segmentation of hippo-
campus has received widespread attention due to its impor-
tance in clinical applications. There are also various
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retrospective studies which compared the strengths and weak-
nesses of various techniques of automatic hippocampal seg-
mentation [16–18]. In general, these methodologies can be
divided into three categories.

Firstly, atlas-based methods were utilized as non-
parametric regression models. They map the coordinates of
tissues from the atlas image to the target image through reg-
istration [19, 20]. Subsequently, multi-atlas [21, 22] ap-
proaches were introduced to improve the accuracy of segmen-
tation, and probabilistic atlas [23, 24] methods were suggested
because of high computational cost. Secondly, traditional ma-
chine learning methods assigned labels to image through
handcraft characteristics. Yongfu Hao et al. [25] proposed
local label learning strategies to estimate the segmentation of
subject images using k-nearest neighbor (k-NN) and support
vector machine (SVM) methods based on image intensity and
texture features. Additionally, the automatic brain structure
segmentation (ABSS) [26] which was a two-stage architecture
performed well in the hippocampus segmentation task [17].
Thirdly, data-driven approaches extracted high-level charac-
teristics automatically and realized tasks in an end-to-end
manner. Convolutional neural network (CNN), fully
convolutional network (FCN) [27], and U-net [28] models
were proposed in succession for image segmentation. It is

worth mentioning that the FCN label the input image densely
with the fully convolutional layer. A case in point is
Kamnitsas et al. [29], as an integrated technique between
FCNs and conditional random fields (CRFs) was proposed
to further improve the segmentation accuracy. Liu X et al.
[30] designed an RPP model through the incorporation of
residual connections and pyramid pooling into the FCN
framework. Although RPP has a great effect on road detec-
tion, it was not applicable in medical image segmentation
because of the computer memory limitation. In view of seg-
mentation accuracy and operation complexity, we consider the
data-driven approach represented by CNNs to achieve auto-
matic segmentation of hippocampus owing to its flexibility.

Additionally, ensemble learning achieves more accu-
rate, stable, and robust results by combining multiple sin-
gle models. Especially, multi-view learning makes use of
the difficulty of learning data in different views and exerts
interactions between views, complementary advantages,
and collaborative learning. Hessian multiset canonical cor-
relations (HesMCC) [31, 32] for multi-view feature analy-
sis is presented, taking the advantage of Hessian and pro-
vides superior extrapolating capability and finally leverage
the classification performance. A novel multi-view atten-
tion network (MuVAN) [33] is proposed to learn fine-

Fig. 1 Patients with different
degrees of illness is selected to
display the contrast in the
manually segmented
hippocampus (purple circle). Left
to right are normal control (NC)
(a), MCI (b), and AD (c)
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grained attentional representations by constructing a hy-
brid focus procedure. Recently, multi-view convolutional
networks [34, 35] are proposed, for which the features are
combined using a dedicated fusion method for false posi-
tive reduction. Based on the previous parallel network, this
paper designs a multi-target integrated network to charac-
terize the consistency of predicted output and ground truth
from multi-view.

In this paper, the hippocampus is considered as a whole,
without meticulous delimitations of the left or right hippo-
campal areas [24, 25, 36, 37]. We filter dataset with hippo-
campus annotated expertly from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset [38] and illustrate
the relevance distribution between the extent AD and hip-
pocampal volume regarding the left and right volume. As
shown in Fig. 2, whether it is the left, the right, or the total
hippocampal volume, the density distribution curve regard-
ing the degree of disease is similar. Therefore, the overall
hippocampus is used as a research goal to achieve automat-
ic segmentation.

To segment the hippocampus accurately and efficiently,
a multi-target interactive neural network is proposed for
automatic hippocampus segmentation in MRI. We com-
pare the proposed various objective functions with the
blended architecture to validate the effectiveness of
multi-target fusion. Simulation results indicate that the per-
formance of the volume correlation between the automatic
output and manual segmentation improved greatly al-
though the improvement in the accuracy is not obvious.
Main contributions of this work are summarized as
follows:

(1) 3D interactive network (Inter-Net) is designed by draw-
ing on the notion of the U-net and residual network. The
Inter-Net is capable of directly mapping volumetric data
into a corresponding score volume within a single for-
ward propagation. Besides, the segmentation accuracy
increases to some extent through the interaction of com-
partments and pathways.

(2) Multi-target integrated architecture is proposed to per-
form robust hippocampus segmentation. To the best of
our knowledge, we are one of the founding pioneers who
combine the advantages of multiple objective functions.

(3) To ensure the validity and authority, the segmentation
performance of our proposed method is measured in
voxel-, volume-, and distance-based metric.

The remainder of this paper is organized as follows.
We detail the proposed method in the “Method” section
and report the experimental results in the “Experiments
and Results” section. The “Discussion” section further
analyzes the key issues of the proposed method and dis-
cusses future directions. The conclusions are drawn in the
“Conclusion” section.

Method

In this section, the hippocampal segmentation is presented
as an optimization problem. Simply put, we find a suitable
function that maps the input image I to the corresponding
binary tissue mask M. Main contributions of our work are
the network architecture and the multi-target mind, which
are outlined in the “Model Architecture” and “Objective
Function” sections, respectively.

Model Architecture

Borrowing from the innovation of self-encoder [39, 40] and
residual network [41, 42], the interactive neural network
(Inter-Net) is designed. It achieves the interaction through
two aspects: one is through the compartments, which builds
an exponential ensemble network that integrates numerous
short networks together when propagation is forwarded.
Second is through the pathways, which realizes inter-
connected pathways between feature extraction and restora-
tion. Inter-Net encourages feature reuse throughout the net-
work, which makes the transfer of features and gradients more

Fig. 2 Density map on hippocampal volume. From left to right, the pictures depict the relevant distribution between the hippocampal volume and the
extent of the disease in left, right, and total hippocampus level
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efficient and the network is easier to train. Inter-Net is con-
structed with the interactive block and the sampling block,
where the specific routine is shown in Fig. 3.

Similarly, the Inter-Net, as designed in Fig. 3a, is construct-
ed with the interactive block (Fig. 3b) and sampling block
(Fig. 3c). Similarly, the interactive block recognizes the inter-
active delivery of extracted characteristics while the sampling
block achieves the change in the numbers of channels and
down-sampling operations.

Next, we describe the working principles of this architec-
ture in details.

(a) Interactive Block

The biggest difference between the Inter-Net and the
residual network [54] lies in the way of information inter-
action. As for the Inter-Net, interactive block which is
shown in Fig. 3b cooperates with the characteristics of
layers by h(x(l)) = x(l − 2), instead of h(x(l)) = x(l) in the resid-
ual network, where x(l − 2) is the input feature to the (l − 2)th
interactive unit. Its specific formula is as follows:

x lð Þ
j ¼ max 0;w lð Þ

ij *x
l−1ð Þ
i þ w l−2ð Þ

ij *x l−3ð Þ
i þ b lð Þ

j

� �
; ð1Þ

where w lð Þ
ij ; l∈ 1; L½ � denotes the trainable convolution filter that

connects the feature maps of contiguous layers, L is the total
number of layers in the network and l represents the index of a

convolutional layer, x lð Þ
j ; i∈ 1; F½ � represents the channel j in layer

l, F is the number of filters in current layer, b lð Þ
j represents the

trainable bias terms, ∗ denotes the convolution operation in the
same border mode, and max(0, ·) means that we need to adopt
rectified linear units (ReLU) [43] as an activation function.

(b) Sampling Block

As the name suggests, sampling blocks, shown in Fig. 3c,
characterize the number of channels with a concurrent fully
convolutional layer. It is composed of two concurrent
convolutional actions; one is used to extract features in a nor-
mal receptive field while another realizes fully connected to
the previous layer.

y lð Þ
j ¼ max 0;w lð Þ

ij *x
l−1ð Þ
i þ λ lð Þ � x l−1ð Þ

i þ c lð Þ
j

� �
; ð2Þ

where λ(l) denotes the sharing weights between the (l − 1)th
and the lth layer in a fully connected manner.

Fig. 3 An overview of the proposed interactive network (Inter-Net). a The structure of Inter-Net which consists of two interactive pathways between the
upper and subcortical. b, c The Inter-Net component modules interactive block and sampling block, respectively
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In regard to downsampling, we can set the strides (s) for
both parallel pathways. In the subcortical pathway, the module
is only responsible for changing the number of channels in its
current condition due to the absence of downsampling.

(c) Discriminative Layer

In the last layer, the prediction of the voxel is achieved by
fully connected convolutional layer with the activation func-
tion of Softmax. It outputs a matrix with values in the range
between 0 and 1, which represents the probability that each
pixel belongs to the tissue in turn. The computational process
is as follows:

o1 ¼ eθ
T
i x

L−1ð Þ

∑
2

j¼1
eθ

T
j x L−1ð Þ

; ð3Þ

where θi, i ∈ [1, k] denotes the adjustable parameters in a fully
connected network, k indicates the total number of categories,
and 2 is specific to the hippocampal segmentation issue.

In addition, the Inter-Net can be seen as a segmentation
network composed of an upper pathway and a subcortical
pathway. The increasingly abstracted image features can
be learned in the upper pathway as well as the subcortical
pathway, which calculates the probabilistic segmentation
at the voxel level. Furthermore, contextual image informa-
tion is crucial for maintaining the accuracy of image seg-
mentation either it is in the upper or subcortical pathway.
The higher-lower level features are concatenated in a
shortcut connection manner, realizing the interconnections
of the upper and subcortical pathways.

Objective Function

In this paper, we model hippocampal segmentation as an op-
timization issue, finding an appropriate function f which min-
imizes the loss function. It can be represented in the following
formula:

f̂̂ ¼ argmin
f ∈F

∑
n
E f n; f Ið Þð Þ; ð4Þ

where F indicates the set of all possible functions for seg-
mentation, E is an error measure, which is also known as an
objective function, calculating the dissimilarity between man-

ual segmentation and automated segmentation, and f̂ is the
most suitable function corresponding specific objective func-
tion E.

The objective function E is a destination that explores the
relationship between input images I and the objective mask.
From an engineering perspective, the objective is the criteria
that evaluate the performance of the system. In a practical
manner, a single evaluative criterion will reduce the robust-
ness of the system, which is too monotonous to illustrate the

effect of the model. Therefore, we attempt to design three
objective functions from different considerations. The specific
explanations are as follows:

(a) Probabilistic Similarity Objective Function (PSF)

Probabilistic similarity index (PSI) is evolved from the
most common dice similarity coefficient, which represents
a proximity measure between probability segmentation
output and binary reference segmentation. On the account
of satisfying the definition of minimizing the objective
function, we construct PSF by subtracting PSI from 1
because PSI is greater than 0 and less than 1. Then, it
can be described as follows:

EPSF ¼ 1−
2� ∑

x
pg

∑
x
p2 þ ∑

x
g2

¼ 1−PSI; ð5Þ

where p denotes the probabilistic matrix corresponding to
the current output, and g indicates the ground truth for
current samples. The value is between 0 and 1, which is
an alternative map of dice similarity coefficient.

(b) Cross-Entropy Objective Function (CEF)

Cross-entropy, the most prevalent theory in various appli-
cations currently, is evolved from information theory. It is an
effective tool for calculating linguistic disambiguation, which
measures the similarity between ground truth g and predicted
markers p. The formula is as follows:

ECEF ¼ −
1

n
∑
x
glnpþ C � 1−gð Þln 1−pð Þ½ �: ð6Þ

Compared with a typical binary cross-entropy cost func-
tion, an extra parameter C, balance factor, is used to compen-
sate for the imbalance in the class gap. In the hippocampal
segmentation task, C= 5 is set to achieve a more accurate
segmentation.

(c) Poisson Distribution Objective Function (PDF)

The majority of things in real life comply with the
Poisson distribution that is the limiting distribution for
a normal approximation to a binomial where the proba-
bility goes to zero and the number of trials goes to in-
finity. EPDF comes from Poisson distribution and mea-
sures the degree to which the predicted distribution devi-
ates from the expected distribution. In this paper, it is
computed by

EPDF ¼ 1

n
∑
x

p−glogpð Þ: ð7Þ
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From the description of formula, EPDF focuses more on
voxels marked as 1 in ground truth, which makes up the im-
balance of categories precisely.

(d) Model Fusion in Multi-Target Function

A simple overlay of the above objective function will de-
crease the performance of the model conversely due to dimen-
sional inconsistency. It has been greatly demonstrated that
integration always improves the performance of models more
or less, such as multi-view [35, 37]. Likewise, we construct
the parallel multi-target architecture by integrating the above
objective functions, presented in Fig. 4.

P ŷ̂jIð Þ ¼ ∑
i
λipi ŷ̂jI ;Wið Þ; ð8Þ

where P ŷjIð Þ is the fused prediction probabilistic matrix cor-
responding to the input image I through the entirety of the
network. λi represents the ratio in which architecture with
the ith objective function accounts for the entire network, re-
spectively. In this paper, we determine λi through a grid search
strategy and discover λ1 = 0.5, λ2 = 0.3, λ3 = 0.2, realizing the
best combination among objective networks mentioned
above.

Training

Throughout the recent years, a rich body of methods have
been proposed for automatically choosing learning rates, such
as adaptive learning rate (Adadelta) [44], adaptive moment
estimation (Adam) [45], root mean square prop (RMSprop)
[46], which sets an adaptive learning rate for parameters
through gathering various statistical knowledge of the partial
derivatives during the iteration. In our experiments, we com-
pare a variety of adaptive optimization functions and adopt the
most robust optimizer, Adam, with a learning rate of 0.001
and other parameters with the default.

Dropout [47] is set to 0.2 in the middle layer and the fully
convolutional layer. Taking into account the impact of the
number of parameters, the size of all convolution kernels in

the Inter-Net is set to 3 × 3 × 3 with the exception of the fully
convolutional operation. This thought is borrowed from the
visual geometry group (VGG-Net) [48] and can decrease the
trainable parameters without affecting the receptive field [49].
Additionally, early stopping with patience = 5, batch-
normalization with epsilon = 1e-6, and momentum = 0.9 are
utilized to avoid overfitting. We implement the proposed ar-
chitecture on Python based on the deep learning library of
Keras, utilizing TensorFlow backend and a GPU of NVIDIA
TITAN X.

Experiments and Results

Dataset

ADNI is a global research effort of various coinvestigators
from extensive private companies and academic institutions.
It was launched as a public-private partnership in 2003, led by
Principal Investigator Michael W. Weiner, MD. The initial
purpose of ADNI has been to investigate and develop treat-
ments that mitigate or halt the progression of AD through
biological markers or clinical and neuropsychological assess-
ment. These could be combined to measure the progression of
MCI and early AD. While being established, subjects have
been recruited from over 50 locations across Canada and the
USA. In this article, all images utilized in the preparation were
downloaded from the ADNI LONI Image Data Archive (adni.
loni.usc.edu).

Specifically, T1-weighted 1.5T MR image is considered
from the ADNI1 database. To ensure consistency in the seg-
mentation of the hippocampus, scans with the hippocampal
mask are selected with the voxel size 1.25 × 1.25 × 1.2 mm,
repetition time (TR) = 2300 ms, and echo time (TE) = 3 ms.
As a result, we screen 550 scans that were accompanied by
manual hippocampal segmentation results. The demographic
information includes sex, age, weight, and Mini-Mental State
Examination (MMSE) listed in Table Table 1.

Considering the relatively fixed position and a very small
volume of hippocampus in the entire brain, we crop the

Fig. 4 Multi-target integrated
architecture used in realizing
high-precision segmentation
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volume of interest (VOI) of the hippocampus into each scan.
In addition, computer memory limitation also makes it neces-
sary to clip target images. After many attempts, the cropping
box of 763 is defined.

Evaluation Metrics

A series of volumetric quality measures are adopted to assess
the performance of the above model quantitatively. For binary
classification problems, the confusion matrix is the most basic
and commonplace method of evaluation. By definition, a con-
fusion matrix is composed of true positive (TP), false positive
(FP), false negative (FN), and true negative (TN). Several
combinations of the above indices are widely used to measure
the overlap and correlation between automatic A and manual
M segmentation results. To thoroughly evaluate the effective-
ness of the proposed method, four evaluation indicators are
defined from the aspects of voxel, volume, and distance.

Firstly, dice similarity coefficient (DSC) is the most popu-
lar factor to quantify the segmentation accuracy [50]. It is a
voxel-based level and describes a normalized overlap coeffi-
cient between the gold standard and automated segmentation,
which is defined as follows:

DSC ¼ 2Vol MAð Þ
Vol Mð Þ þ Vol Að Þ ¼

2TP

2TPþ FPþ FN
; ð9Þ

whereMA denotes the intersection of manualM and automat-
ed A segmentation, that is, the overlapping voxels between the
gold standard and the automated segmentation, and Vol(·) rep-
resents a volume formula, that is, how many voxels belong to
the hippocampal structures.

Secondly, precision (PRE) is a description of the random
error and is a measure of statistical variability. It is the repeat-
ability of successivemeasurements under the same conditions,
characterizing the size of the random error during the mea-
surement process.

PRE ¼ Vol MAð Þ
Vol Mð Þ ¼ TP

TPþ FP
: ð10Þ

PRE is defined as the ratio of the number of the true pos-
itive voxel to the sum of both true positive and false positive
size. The larger the value is, the higher the accuracy of the
model is, and the better it performs.

Thirdly, relative volume difference (RVD) is defined to
measure the reliability of the automated hippocampal segmen-
tation through evaluating volumetric, which is defined as fol-
lows:

RVD ¼ jVol Mð Þ−Vol Að Þj
Vol Mð Þ ¼ jTN−FPj

TPþ TN
: ð11Þ

RVD measures the volumetric difference between two im-
ages that are superimposed on each other, so that the lower its
grade, the more reliable it is. However, there is no information
concerning the overlap of the segmentation. In the most ex-
treme cases, the automatic segmentation may achieve the
same total tissue size without any voxels in overlapping.

Lastly, the root mean square (RMS) depicts the degree of
resemblances of resulting hippocampal segmentation that is
masked in a statistical method. It is a distance-based metric
by using surface-to-surface geometrics which reflect the mag-
nitude of a varying quantity.

RMS ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jSAj þ jSM j �
�

∑
a∈S Að Þ

d2 a; SMð Þ þ ∑
m∈S Mð Þ

d2 m; SAð Þ
s

;

ð12Þ
where SA and SM are indicated as the set of surface voxels of
automated segmentation A and maskM, respectively, d(a,SM)
denotes the nearest distance from point “a” to the surface SA.
RMS assesses the imperfection of the automated to themanual
segmentation based on surface distance.

The Effectiveness of Network Architecture

In this paper, we perform extensive ablation studies on the
selected dataset (fivefold cross validation) to investigate the
efficacy of proposed architecture on hippocampal
segmentation.

Our ultimate goal is to generate a binary matrix which is
rooted in the probabilistic output; 1 denotes a tissue voxel and
0 to the opposite. Therefore, we choose the mean DSC [51] as
the fixed criteria, which should be maximized throughout the
training process, and the same criteria should be utilized for
the validation set. In this experiment, we discover that tPSF =
0.5, tCEF = 0.67, tPDF = 0.45, and tI = 0.45 were the thresholds
of each network. The results of the evaluation of each network
are indicated in the experimental part of Table 2.

To ascertain whether the interactive block is available for
tissue segmentation, we compare the segmentation results of
different neural network architectures, using PSF as a bench-
mark shown in Eq. (1). In this study, we regard Inter-Net
architecture as the standard and construct a generic
convolutional network (CNN-Net) and a residual network

Table 1 Fundamental dataset information (mean ± std)

M/F Age Weight MMSE Number

NC 76/86 76.15 ± 5.49 71.05 ± 14.91 29.13 ± 1.06 162

MCI 156/126 76.33 ± 6.86 74.47 ± 13.81 26.05 ± 2.82 282

AD 58/48 76.55 ± 5.89 70.45 ± 11.94 21.87 ± 3.59 106
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(Res-Net). Figure 5 reveals the comparison results among
Inter-Net, CNN-Net, and Res-Net, where the specific experi-
mental results are also listed in the middle part of Table 2.
Obviously, the interactive neural network outperforms Res-
Net and CNN-Net, with high accuracy as well as small
variance.

It is not a trivial task to perform an impartial comparison of
the accuracy of different automatic techniques. Although
Ghanei et al. [52] accomplished a DSC of 0.94, it was not
convincing because it conducted only one sample test [17].
To increase the comparability of methods, we chose three
typical techniques in the published articles, namely multiple
automatically generated templates (MAGeT), learning em-
beddings for atlas propagation (LEAP), and multi-view U-
ConvNet (MvU-Net), using the same data source ADNI as
our experiments. In addition, the number of volumes tested
is also shown in the last column to indicate the credibility of
our comparison. The last part of Table 2 manifests the com-
parison results of different methods.

Looking at the three-part evaluations of Table 2, it is clear
that the Inter-Net has an excellent performance in hippocam-
pal segmentation whether in DSC, PRE, RVD, or RMS. For

different objective functions, EPSF performs the best on DSC
and RVD, EPDF focuses on RMS, and ECEF achieves high-
precision. This is especially due to the metrics that have been
optimized after integrating the multi-target loss function; its
performance is the best and the most stable. Comparing the
first and the third rows of Table 2, our model still outperforms
the other three comparison techniques even before integrated.

Volumetric Correlation

DSC index is not sufficient to represent the level of segmen-
tation system exactly though it has become the most popular
indicator for assessing the performance of segmentation.
Bland-Altman plots (Fig. 6; Table 3) assess the agreement
between the automated segmentation and the gold standard
by investigating the existence of any systematic differences
with fixed bias. There is no doubt that the right bottom panel
shows the densest, smallest standard deviation of differences.
The points outside the limits of agreement (mean ± 1.96SD)
indicate that the Inter-Net with EPSF (left, upper) and the inte-
gratedmodel (right, bottom) segment the hippocampus overly,
that is, a tendency to segment larger tissue than the standard.

Table 2 Comparison of the segmentation accuracy of different experiments and other methods

DSC PRE RVD RMS Number of volumes tested

Experiment 550

Inter-Net (EPSF) 0.913 ± 0.025 0.908 ± 0.0368 0.046 ± 0.039 0.492 ± 0.123

Inter-Net (ECEF) 0.904 ± 0.029 0.912 ± 0.049 0.058 ± 0.049 0.514 ± 0.110

Inter-Net (EPDF) 0.903 ± 0.033 0.886 ± 0.054 0.063 ± 0.057 0.496 ± 0.100

Integrated 0.919 ± 0.023 0.926 ± 0.032 0.040 ± 0.036 0.464 ± 0.082

Other Networks 550

CNN-Net (EPSF) 0.845 ± 0.0447 0.867 ± 0.094 0.145 ± 0.105 1.033 ± 0.859

Res-Net (EPSF) 0.909 ± 0.0257 0.897 ± 0.037 0.048 ± 0.037 0.504 ± 0.184

Other methods

MAGeT [21] 0.869 0.894 – 0.48 ± 0.09 60

LEAP [55] 0.848 ± 0.031 – – – 796

MvU-Net [37] 0.895 – – – 110

Fig. 5 Graphical box depiction of
networks of the Inter-Net, the
Res-Net, and the CNN-Net with
PSF as the objective function by
quartile
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Likewise, the extracted volumes are compared through lin-
ear regression per subject in Fig. 7. From the perspective of
fitting curve alone, the integrated network and Inter-Net with
ECEF have similar performance, which is closer to y = x.
Combining with the scatter plot distribution and the fitting
curve, a closer relationship in total hippocampal volume be-
tween all methods and manual label volumes can be revealed
in the subtle gaps. It is also notable that the allocation of the
scatter is more concentrated around the fitting curve with the
lowest deviation.

In terms of volumetric correlation, the integrated network
performs the best, which combines the advantages of the high
correlation of EPSF and the closest fitting curve on ECEF.

Discussion

In current clinical routines, the hippocampus has been regarded
as an important biomarker for the assessment of neurological
disease. And the manual notation is still the ideal standard for
hippocampal segmentation. With an aim to relieve the workload
of radiologists while also reducing the inconsistencies with intra-

and inter-volume variability, a deep learning computational ar-
chitecture known as the multi-target integrated interactive neural
network is designed to segment the hippocampus in a data-driven
manner. It is an end-to-end system which embeds hippocampal
feature extraction along with characteristics revivification into a
hierarchical network. Next, a shortcut connection is introduced to
realize interactive information between high- and low-level char-
acteristics. Furthermore, we pay special attention to the gradient
dispersion and propose the interactive block which is borrowed
from the residual network, achieving better segmentation results.

From an engineering perspective, the objective function is
a mathematical expression of designed variables, reflecting
some specific purpose to be pursued. In this paper, we design
three objective functions from the aspects of evaluation index,

Fig. 6 Bland-Altman plots for volumetric comparisons between hippocampal volumes resulting from manual labeling versus the results of following
objective models: PSF (upper, left), CEF (upper, right), PDF (bottom, left), and integrated (bottom, right)

Table 3 Bland-Altman estimations for segmentation methods

Models Mean 2.5% limit 97.5% limit SD

Inter-Net (EPSF) 21.735 − 191.886 235.356 108.990

Inter-Net (ECEF) − 32.647 − 302.455 237.161 137.657

Inter-Net (EPDF) 85.847 − 176.385 348.079 133.792

Integrated − 25.475 − 209.294 158.345 93.785
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information theory, and data distribution. Then, we determine
the corresponding weight coefficient through the grid search
to maximize the DSC in the training dataset and construct the
global segmentation network by λDSF = 0.5, λCEF = 0.3,
λPDF = 0.2. Analysis of voxel-, volume-, and distance-based
metrics determines that the combination of the above objec-
tive function obtained a better overall performance of segmen-
tation. The various evaluation indexes of different objective
function networks are compared in the violin graph (see
Fig. 8). It is revealed that the integrated network has varying
degrees of improvement in each indicator and behaves more
concentrated (the wider graphics in the middle line), which
enhances the robustness of the system.

In order to profoundly explore the relationship between
disease and model performance, we take AD as an example.
Figure 9 presents the distribution of scatter density for disease
group. As can be seen from this figure, the evaluation values
of NC, MCI, and AD are all distributed evenly. Outliers are
mostly caused by AD patients (orange part of the figure).
There are two possible reasons for this phenomenon. One is
the fact that the number of AD samples is less than that ofMCI
and NC, which leads to the model automatically deviating to
the NC andMCI group during training. Another is the atrophy

of the hippocampus which blurs the boundaries between the
hippocampus and the surrounding tissue, increasing the diffi-
culty of segmentation.

Relatively, a few studies analyzed the automated hippo-
campal segmentation regarding the left and right hippocampus
as a whole. In the open toolbox about segmentation program,
FreeSurfer provides multiclass segmentation based on
Markov random field and probabilistic atlas. It is shown to
have greater accuracy than other toolboxes especially in the
head and tail portions of the hippocampus [15]. To further
assimilate auxiliary segmentation results of the proposed ap-
proach, we take five samples from 550 scans randomly and
perform the hippocampal segmentation using FreeSurfer 6.0.
A comparison of the manual and automatic hippocampal
probabilistic segmentation from a representative view is pre-
sented in Fig. 10. In the sagittal view, it is easy to measure the
segmentation performance in details because of morphology.
The second, third, and fourth columns represent the probabi-
listic segmentation results corresponding to three objective
functions; the last column is the probabilistic results produced
by FreeSurfer and purple circles the final segmentation area.
Obviously, our model produces better segmentation results
than FreeSurfer. After being integrated, the architecture

Fig. 7 Hippocampal volumes (mm3) estimated by the manual and automated methods for the hippocampus and their linear regression
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combines all the advantages of objective functions and is
guaranteed both in accuracy and robustness.

The proposed automatic hippocampal segmentation archi-
tecture has great significance in clinical practice. As is known

to all, operational complexity and running time are rudimen-
tary elements in clinical application. In view of operational
complexity, the framework proposed in this paper is based
on deep learning, which is built upon the characterization of

Fig. 8 Graphical violin depiction of models using DSC (top left corner), precision (top right corner), RVD (bottom left corner), and RMS (bottom right
corner) on 550 cases by quartile

Fig. 9 Scatter density map by diagnosis group in each evaluation indicator
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data and study convolutional filters through forward propaga-
tion and backward feedback. Once the convolutional kernels
are determined, the mapping from input image I to the seg-
mentation result A is also established and this entire process
occurs without human intervention. In regard to the running
time, the tested architecture running time is 42.1 s from the
image reading to the segmentation result output. Moreover,
the running time can be shortened to 29.4 s when only one
objective network is used instead of three parallel architec-
tures. There is a noticeable improvement compared to 2 min
per volume reported in [53]. In brief, this work is derived from
the clinical consideration, taking into account the operational
complexity, the running time of the program, the accuracy of
hippocampal segmentation, and so on.

In principle, our segmentation architecture is general and
can be easily extended to other tissue segmentation in 3D
medical images, such as the thalamus, corpus callosum, cere-
bellum segmentation, and so on. Since the location and shape
of brain tissues are relatively fixed, prior knowledge
concerning target tissue can be roughly used to select a VOI,

which alleviates current computer memory limitation effec-
tively. However, we must take the whole image as input when
dealing with specific issues following little prior knowledge
regarding location, size, and shape, take multiple sclerosis as
an example, how to design an end-to-end architecture without
human intervention to realize the precise segmentation of le-
sions. In our future work, we shall consider cascade interactive
neural network with the entire image as an input, to reduce the
dependence on prior knowledge and achieve automatic seg-
mentation of various areas of interests.

Conclusion

In this paper, an effective and robust architecture is presented
for hippocampal segmentation based on deep convolutional
neural networks. On the one hand, we design an interactive
neural network to achieve end-to-end segmentation of the hip-
pocampus, which solves gradient dispersion by adding short-
cut connections in intra- and inter-pathway. On the other hand,

Fig. 10 Comparison of segmentation results for the left hippocampus on a transverse slice in sagittal view. The second, third, and fourth correspond to
different objective function models, respectively. The final column represents FreeSurfer results
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the concept of multi-target which combines the advantages of
multiple objective functions is proposed to increase the ro-
bustness of the segmentation. Experimental results demon-
strate that the proposed approach is superior to the traditional
methods dramatically following with higher DSC.
Furthermore, the proposed algorithm goes beyond hippocam-
pal segmentation and it can be employed to other volumetric
image segmentation tasks.
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